MdNup62 involved in salt and osmotic stress tolerance in apple … – Nature.com


  • Li, J. et al. Soil salinization research in China: Advances and prospects. J. Geogr. Sci. 24, 943–960 (2014).

    Article 

    Google Scholar
     

  • Zhang, C. et al. Genomic identification and expression analysis of nuclear pore proteins in Malus domestica. Sci. Rep. 10, 17426 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tamura, K., Fukao, Y., Iwamoto, M., Haraguchi, T. & Hara-Nishimura, I. Identification and characterization of nuclear pore complex components in Arabidopsis thaliana. Plant Cell 22, 4084–4097 (2011).

    Article 

    Google Scholar
     

  • Zhang, A. et al. Nuclear pore complex components have temperature-influenced roles in plant growth and immunity. Plant Cell Environ. 43, 1452–1466 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, Z. et al. Nup96 and HOS1 are mutually stabilized and gate CONSTANS protein level, conferring long-day photoperiodic flowering regulation in Arabidopsis. Plant Cell 32, 374–391 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lazaro, A., Mouriz, A., Piñeiro, M. & Jarillo, J. A. Red light-mediated degradation of CONSTANS by the E3 ubiquitin ligase HOS1 regulates photoperiodic flowering in Arabidopsis. Plant Cell 27, 2437–2454 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parry, G. Components of the Arabidopsis nuclear pore complex play multiple diverse roles in control of plant growth. J. Exp. Bot. 65, 6057–6067 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, C. et al. MdNup54 interactions with MdHSP70 involved in flowering in apple. Front. Plant Sci. 13, 903808 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, Y. et al. Nuclear pore complex component MOS7/Nup88 Is required for innate immunity and nuclear accumulation of defense regulators in Arabidopsis. Plant Cell 21, 2503–2516 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roth, C. & Wiermer, M. Nucleoporins Nup160 and Seh1 are required for disease resistance in Arabidopsis. Plant Signal. Behav. 7, 1212–1214 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. & Li, X. A putative nucleoporin 96 is required for both basal defense and constitutive resistance responses mediated by suppressor of npr1-1, constitutive 1. Plant Cell 17, 1306–1316 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parry, G., Ward, S., Cernac, A., Dharmasiri, S. & Estelle, M. The Arabidopsis SUPPRESSOR OF AUXIN RESISTANCE proteins are nucleoporins with an important role in hormone signaling and development. Plant Cell 18, 1590–1603 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robles, L. M., Deslauriers, S. D., Alvarez, A. A. & Larsen, P. B. A loss-of-function mutation in the nucleoporin AtNUP160 indicates that normal auxin signalling is required for a proper ethylene response in Arabidopsis. J. Exp. Bot. 63, 2231–2241 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong, C. et al. A putative Arabidopsis Nucleoporin, AtNUP160, Is critical for RNA export and required for plant tolerance to cold stress. Mol. Cell. Biol. 26, 9533–9543 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, Y. et al. An Arabidopsis Nucleoporin NUP85 modulates plant responses to ABA and salt stress. PLOS Genet. 13, e1007124 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y., Ye, Q., Zhang, M. & Yang, C. Involvement of Arabidopsis CPR5 in thermotolerance. Acta Physiol. Plant. 34, 2093–2103 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Scharf, K. D., Berberich, T., Ebersberger, I. & Nover, L. The plant heat stress transcription factor (Hsf) family: Structure, function and evolution. Biochim. Biophys. Acta BBA Gene Regul. Mech. 1819, 104–119 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Charng, Y. et al. A heat-inducible transcription factor, Hsf A2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol. 143, 251–262 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ikeda, M., Mitsuda, N. & Ohme-Takagi, M. Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs But positively regulate the acquired thermotolerance. Plant Physiol. 157, 1243–1254 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mishra, S. K. et al. In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev. 16, 1555–1567 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zinsmeister, J. et al. The seed-specific heat shock factor A9 regulates the depth of dormancy in Medicago truncatula seeds via ABA signalling. Plant Cell Environ. 43, 2508–2522 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, N. et al. HEAT SHOCK FACTOR A8a modulates flavonoid synthesis and drought tolerance. Plant Physiol. 184, 1273–1290 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiang, J. et al. Heat shock factor OsHsfB2b negatively regulates drought and salt tolerance in rice. Plant Cell Rep. 32, 1795–1806 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hwang, S. M. et al. Functional characterization of Arabidopsis HsfA6a as a heat-shock transcription factor under high salinity and dehydration conditions. Plant Cell Environ. 37, 1202–1222 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • An, J. et al. Apple MdERF4 negatively regulates salt tolerance by inhibiting MdERF3 transcription. Plant Sci. 276, 181–188 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huo, L., Guo, Z., Jia, X., Sun, X. & Ma, F. Increased autophagic activity in roots caused by overexpression of the autophagy-related gene MdATG10 in apple enhances salt tolerance. Plant Sci. 294, 110444 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lian, X. et al. MdDREB2A in apple is involved in the regulation of multiple abiotic stress responses. Hortic. Plant J. 7, 197–208 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sun, M. et al. Molecular cloning and functional characterization of MdNHX1 reveals its involvement in salt tolerance in apple calli and Arabidopsis. Sci. Hortic. 215, 126–133 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, C. et al. MdNup62 interactions with MdHSFs involved in flowering and heat-stress tolerance in apple. BMC Plant Biol. 22, 1–16 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Livak, K. J. & Schmittgen, T. D. Analysis of Relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clough, S. J. & Bent, A. F. Floral dip: A simplified method for Agrobacterium -mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, D. et al. Overexpression of the melatonin synthesis-related gene SlCOMT1 improves the resistance of tomato to salt stress. Molecules 24, 1514 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ishitani, M., Xiong, L., Lee, H., Stevenson, B. & Zhu, J.-K. HOS1, a genetic locus involved in cold-responsive gene expression in Arabidopsis. Plant C. 10, 1151–1161 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Zou, J., Liu, C., Liu, A., Zou, D. & Chen, X. Overexpression of OsHSP17.0 and OsHSP23.7 enhances drought and salt tolerance in rice. J. Plant Physiol. 169, 628–635 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X. et al. Expression and function analysis of a rice OsHSP40 gene under salt stress. Genes Genom. 41, 175–182 (2018).

    Article 

    Google Scholar
     

  • Tang, X. et al. Molecular cloning and functional analyses of the salt- responsive gene KvHSP70 from Kosteletzkya virginica. Land Degrad. Dev. 30, 773–782 (2020).

    Article 

    Google Scholar
     

  • Wang, S. et al. DsHSP90 is involved in the early response of dunaliella salina to environmental stress. Int. J. Mol. Sci. 13, 7963–7979 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shim, E. et al. Targeted disruption of HSP70.1 sensitizes to osmotic stress. Embo Rep. 9, 857–861 (2002).

    Article 

    Google Scholar
     

  • Wang, J. et al. A novel heat shock transcription factor (ZmHsf08) negatively regulates salt and drought stress responses in maize. Int. J. Mol. Sci. 22, 11922 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nishizawa, A. et al. Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J. 48, 535–547 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boeglin, M. et al. Reduced expression of AtNUP62 nucleoporin gene affects auxin response in Arabidopsis. BMC Plant Biol. 16, 2 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Leave a Comment

    Your email address will not be published. Required fields are marked *

    Scroll to Top