Application of ensemble machine learning approach to assess the … – Nature.com


  • Johnsen, K. B., Burkhart, A., Thomsen, L. B., Andresen, T. L. & Moos, T. Targeting the transferrin receptor for brain drug delivery. Prog. Neurobiol. 181, 101665. https://doi.org/10.1016/j.pneurobio.2019.101665 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Langer, R. New methods of drug delivery. Science 249(4976), 1527–1533. https://doi.org/10.1126/science.2218494 (1990).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cipolla, D. Will pulmonary drug delivery for systemic application ever fulfill its rich promise?. Expert Opin. Drug Deliv. 13(10), 1337–1340. https://doi.org/10.1080/17425247.2016.1218466 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Jain, K. K. An overview of drug delivery systems. Methods Mol. Biol. 2059, 1–54. https://doi.org/10.1007/978-1-4939-9798-5_1 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karthikeyan, A., Senthil, N. & Min, T. Nanocurcumin: A promising candidate for therapeutic applications. Front. Pharmacol. 11, 487. https://doi.org/10.3389/fphar.2020.00487 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, J. et al. Amikacin liposome inhalation suspension (ALIS) penetrates non-tuberculous mycobacterial biofilms and enhances Amikacin uptake into macrophages. Front. Microbiol. 9, 915. https://doi.org/10.3389/fmicb.2018.00915 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khatib, I., Chow, M. Y. T., Ruan, J., Cipolla, D. & Chan, H. K. Modeling of a spray drying method to produce ciprofloxacin nanocrystals inside the liposomes utilizing a response surface methodology: Box-Behnken experimental design. Int. J. Pharm. 597, 120277. https://doi.org/10.1016/j.ijpharm.2021.120277 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, K. J., Plaunt, A. J., Leifer, F. G., Kang, J. Y. & Cipolla, D. Recent advances in prodrug-based nanoparticle therapeutics. Eur. J. Pharm. Biopharm. 165, 219–243. https://doi.org/10.1016/j.ejpb.2021.04.025 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hatamipour, M., Sahebkar, A., Alavizadeh, S. H., Dorri, M. & Jaafari, M. R. Novel nanomicelle formulation to enhance bioavailability and stability of curcuminoids. Iran. J. Basic Med. Sci. 22(3), 282–289. https://doi.org/10.22038/ijbms.2019.32873.7852 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y., Lu, Y., Lee, R. J. & Xiang, G. Nano encapsulated Curcumin: And its potential for biomedical applications. Int. J. Nanomed. 15, 3099–3120. https://doi.org/10.2147/ijn.S210320 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Adepu, S. & Ramakrishna, S. Controlled drug delivery systems: Current status and future directions. Molecules https://doi.org/10.3390/molecules26195905 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nik, M. E. et al. Targeted-nanoliposomal combretastatin A4 (CA-4) as an efficient antivascular candidate in the metastatic cancer treatment. J. Cell. Physiol. https://doi.org/10.1002/jcp.28230 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Nikpoor, A. R. et al. Nanoliposome-mediated targeting of antibodies to tumors: IVIG antibodies as a model. Int. J. Pharm. 495(1), 162–170. https://doi.org/10.1016/j.ijpharm.2015.08.048 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khatib, I. et al. Formation of ciprofloxacin nanocrystals within liposomes by spray drying for controlled release via inhalation. Int. J. Pharm. 578, 119045. https://doi.org/10.1016/j.ijpharm.2020.119045 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, C., Yin, L., Tang, C. & Yin, C. Size-dependent absorption mechanism of polymeric nanoparticles for oral delivery of protein drugs. Biomaterials 33(33), 8569–8578. https://doi.org/10.1016/j.biomaterials.2012.07.063 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peer, D. et al. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2(12), 751–760. https://doi.org/10.1038/nnano.2007.387 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dunning H. Size determines how nanoparticles affect biological membranes Imperial College London2020. https://www.imperial.ac.uk/news/204433/size-determines-nanoparticles-affect-biological-membranes/#:~:text=The%20research%20findings%20also%20have,easily%20drawn%20into%20the%20cell (Accessed 18 February 2023).

  • Wu, L., Zhang, J. & Watanabe, W. Physical and chemical stability of drug nanoparticles. Adv. Drug Deliv. Rev. 63(6), 456–469. https://doi.org/10.1016/j.addr.2011.02.001 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patravale, V., Date, A. A. & Kulkarni, R. Nanosuspensions: A promising drug delivery strategy. J. Pharm. Pharmacol. 56(7), 827–840 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y. et al. Preparation of Curcumin-loaded liposomes and evaluation of their skin permeation and pharmacodynamics. Molecules 17(5), 5972–5987. https://doi.org/10.3390/molecules17055972 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Leo, V. et al. Encapsulation of Curcumin-loaded liposomes for colonic drug delivery in a pH-responsive polymer cluster using a pH-driven and organic solvent-free process. Molecules https://doi.org/10.3390/molecules23040739 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tai, K., Rappolt, M., Mao, L., Gao, Y. & Yuan, F. Stability and release performance of curcumin-loaded liposomes with varying content of hydrogenated phospholipids. Food Chem. 326, 126973. https://doi.org/10.1016/j.foodchem.2020.126973 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, Y. et al. Curcumin-loaded liposomes prepared from bovine milk and krill phospholipids: Effects of chemical composition on storage stability, in-vitro digestibility and anti-hyperglycemic properties. Food Res. Int. 136, 109301. https://doi.org/10.1016/j.foodres.2020.109301 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karimi, M. et al. Preparation and characterization of stable nanoliposomal formulations of curcumin with high loading efficacy: In vitro and in vivo anti-tumor study. Int. J. Pharm. 580, 119211. https://doi.org/10.1016/j.ijpharm.2020.119211 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rabima, R. & Sari, M. P. Entrapment efficiency and drug loading of curcumin nanostructured lipid carrier (NLC) formula. Pharmaciana 9(2), 299–306 (2019).

    Article 

    Google Scholar
     

  • Esmaeilzadeh-Gharedaghi, E. et al. Effects of processing parameters on particle size of ultrasound prepared chitosan nanoparticles: An artificial neural networks study. Pharm. Dev. Technol. 17(5), 638–647. https://doi.org/10.3109/10837450.2012.696269 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baharifar, H. & Amani, A. Size, loading efficiency, and cytotoxicity of albumin-loaded chitosan nanoparticles: An artificial neural networks study. J. Pharm. Sci. 106(1), 411–417. https://doi.org/10.1016/j.xphs.2016.10.013 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sansare, S. et al. Artificial neural networks in tandem with molecular descriptors as predictive tools for continuous liposome manufacturing. Int. J. Pharm. 603, 120713. https://doi.org/10.1016/j.ijpharm.2021.120713 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, S. M., Kuo, C. H., Chen, C. A., Liu, Y. C. & Shieh, C. J. RSM and ANN modeling-based optimization approach for the development of ultrasound-assisted liposome encapsulation of piceid. Ultrason. Sonochem. 36, 112–122. https://doi.org/10.1016/j.ultsonch.2016.11.016 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cardoso-Daodu, I. M., Ilomuanya, M. O., Amenaghawon, A. N. & Azubuike, C. P. Artificial neural network for optimizing the formulation of curcumin-loaded liposomes from statistically designed experiments. Prog. Biomater. 11(1), 55–65. https://doi.org/10.1007/s40204-022-00179-6 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liao, Y. et al. Using convolutional neural network as a statistical algorithm to explore the therapeutic effect of insulin liposomes on corneal inflammation. Comput. Intell. Neurosci. 2022, 1169438. https://doi.org/10.1155/2022/1169438 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, F. et al. Comparison of response surface methodology and artificial neural network to optimize novel ophthalmic flexible nano-liposomes: Characterization, evaluation, in vivo pharmacokinetics and molecular dynamics simulation. Colloids Surf. B Biointerfaces 172, 288–297. https://doi.org/10.1016/j.colsurfb.2018.08.046 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Honary, S., Ebrahimi, P. & Hadianamrei, R. Optimization of particle size and encapsulation efficiency of vancomycin nanoparticles by response surface methodology. Pharm. Dev. Technol. 19(8), 987–998. https://doi.org/10.3109/10837450.2013.846375 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hashad, R. A., Ishak, R. A. H., Fahmy, S., Mansour, S. & Geneidi, A. S. Chitosan-tripolyphosphate nanoparticles: Optimization of formulation parameters for improving process yield at a novel pH using artificial neural networks. Int. J. Biol. Macromol. 86, 50–58. https://doi.org/10.1016/j.ijbiomac.2016.01.042 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shalaby, K. S. et al. Determination of factors controlling the particle size and entrapment efficiency of noscapine in PEG/PLA nanoparticles using artificial neural networks. Int. J. Nanomed. 9, 4953–4964. https://doi.org/10.2147/ijn.S68737 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Reker, D. et al. Computationally guided high-throughput design of self-assembling drug nanoparticles. Nat. Nanotechnol. 16(6), 725–733. https://doi.org/10.1038/s41565-021-00870-y (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • León Blanco, J. M. et al. Artificial neural networks as alternative tool for minimizing error predictions in manufacturing ultradeformable nanoliposome formulations. Drug Dev. Ind. Pharm. 44(1), 135–143. https://doi.org/10.1080/03639045.2017.1386201 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Santos, M. et al. Artificial neural networks for qualitative and quantitative analysis of target proteins with polymerized liposome vesicles. Anal. Biochem. 361(1), 109–119. https://doi.org/10.1016/j.ab.2006.11.019 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moussa, H. G., Husseini, G. A., Abel-Jabbar, N. & Ahmad, S. E. Use of model predictive control and artificial neural networks to optimize the ultrasonic release of a model drug from liposomes. IEEE Trans. Nanobiosci. 16(3), 149–156. https://doi.org/10.1109/tnb.2017.2661322 (2017).

    Article 

    Google Scholar
     

  • Hathout, R. M., Gad, H. A. & Metwally, A. A. Gelatinized-core liposomes: Toward a more robust carrier for hydrophilic molecules. J. Biomed. Mater. Res. A 105(11), 3086–3092. https://doi.org/10.1002/jbm.a.36175 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dayhoff, J. E. & DeLeo, J. M. Artificial neural networks: Opening the black box. Cancer 91(8 Suppl), 1615–1635. https://doi.org/10.1002/1097-0142(20010415)91:8+%3c1615::aid-cncr1175%3e3.0.co;2-l (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y., Abbaspour, M. R., Grootendorst, P. V., Rauth, A. M. & Wu, X. Y. Optimization of controlled release nanoparticle formulation of verapamil hydrochloride using artificial neural networks with genetic algorithm and response surface methodology. Eur. J. Pharm. Biopharm. 94, 170–179. https://doi.org/10.1016/j.ejpb.2015.04.028 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zaki, M. R., Varshosaz, J. & Fathi, M. Preparation of agar nanospheres: Comparison of response surface and artificial neural network modeling by a genetic algorithm approach. Carbohydr. Polym. 122, 314–320. https://doi.org/10.1016/j.carbpol.2014.12.031 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tu, J. V. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J. Clin. Epidemiol. 49(11), 1225–1231. https://doi.org/10.1016/s0895-4356(96)00002-9 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abdalla, Y. et al. Machine learning using multi-modal data predicts the production of selective laser sintered 3D printed drug products. Int. J. Pharm. 633, 122628. https://doi.org/10.1016/j.ijpharm.2023.122628 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hayashi, Y. et al. Application of machine learning to a material library for modeling of relationships between material properties and tablet properties. Int. J. Pharm. 609, 121158. https://doi.org/10.1016/j.ijpharm.2021.121158 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, J. et al. The applications of machine learning (ML) in designing dry powder for inhalation by using thin-film-freezing technology. Int. J. Pharm. 626, 122179. https://doi.org/10.1016/j.ijpharm.2022.122179 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Galata, D. L. et al. Real-time release testing of dissolution based on surrogate models developed by machine learning algorithms using NIR spectra, compression force and particle size distribution as input data. Int. J. Pharm. 597, 120338. https://doi.org/10.1016/j.ijpharm.2021.120338 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Džeroski, S., Panov, P. & Ženko, B. Machine learning, ensemble methods. In Encyclopedia of Complexity and Systems Science (ed. Meyers, R. A.) 5317–25 (Springer New York, 2009).

    Chapter 

    Google Scholar
     

  • Neumann, D., Merkwirth, C. & Lamprecht, A. Nanoparticle design characterized by in silico preparation parameter prediction using ensemble models. J. Pharm. Sci. 99(4), 1982–1996. https://doi.org/10.1002/jps.21941 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, L., Braiteh, F. S. & Kurzrock, R. Liposome-encapsulated curcumin. Cancer 104(6), 1322–1331 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cipolla, D., Wu, H., Gonda, I. & Chan, H. K. Aerosol performance and stability of liposomes containing ciprofloxacin nanocrystals. J. Aerosol. Med. Pulm. Drug Deliv. 28(6), 411–422. https://doi.org/10.1089/jamp.2015.1241 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akbarzadeh, A. et al. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 8(1), 102. https://doi.org/10.1186/1556-276x-8-102 (2013).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, P., Chen, G. & Zhang, J. A review of liposomes as a drug delivery system: Current status of approved products, regulatory environments, and future perspectives. Molecules https://doi.org/10.3390/molecules27041372 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding, T., Li, T., Wang, Z. & Li, J. Curcumin liposomes interfere with quorum sensing system of Aeromonas sobria and in silico analysis. Sci. Rep. 7(1), 8612. https://doi.org/10.1038/s41598-017-08986-9 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Angmo, S., Rana, S., Yadav, K., Sandhir, R. & Singhal, N. K. Novel liposome eencapsulated guanosine DI phosphate based therapeutic target against anemia of inflammation. Sci. Rep. 8(1), 17684. https://doi.org/10.1038/s41598-018-35992-2 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khatib, I., Ke, W. R., Cipolla, D. & Chan, H. K. Storage stability of inhalable, controlled-release powder formulations of ciprofloxacin nanocrystal-containing liposomes. Int. J. Pharm. 605, 120809. https://doi.org/10.1016/j.ijpharm.2021.120809 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hewlings, S. J. & Kalman, D. S. Curcumin: A review of its effects on human health. Foods https://doi.org/10.3390/foods6100092 (2017).

  • Amalraj, A., Pius, A., Gopi, S. & Gopi, S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives—A review. J. Tradit. Complement. Med. 7(2), 205–233. https://doi.org/10.1016/j.jtcme.2016.05.005 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Thao, D. T., Nga, N. T., Van, N. A. & Hung, K. D. Potential anticancer activities of a combination of Curcumin, Ginger oleoresin, and Rutin solid lipid nanoparticles (Vietlife-Antican) in LLC tumor-bearing mice. Nat. Prod. Commun. 14(6), 1934578X19858461. https://doi.org/10.1177/1934578X19858461 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Karimi, M., Mashreghi, M., Shokooh Saremi, S. & Jaafari, M. R. Spectrofluorometric method development and validation for the determination of Curcumin in nanoliposomes and plasma. J. Fluoresc. 30(5), 1113–1119. https://doi.org/10.1007/s10895-020-02574-3 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, M. et al. Potential mechanisms of action of Curcumin for cancer prevention: Focus on cellular signaling pathways and miRNAs. Int. J. Biol. Sci. 15(6), 1200–1214. https://doi.org/10.7150/ijbs.33710 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khezri, K., Saeedi, M., Mohammadamini, H. & Zakaryaei, A. S. A comprehensive review of the therapeutic potential of curcumin nanoformulations. Phytother. Res. 35(10), 5527–5563. https://doi.org/10.1002/ptr.7190 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cipolla, D., Blanchard, J. & Gonda, I. Development of liposomal ciprofloxacin to treat lung infections. Pharmaceutics https://doi.org/10.3390/pharmaceutics8010006 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, W. L. et al. Development of a rapidly dissolvable oral pediatric formulation for mefloquine using liposomes. Mol. Pharm. 14(6), 1969–1979. https://doi.org/10.1021/acs.molpharmaceut.7b00077 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nik, M. E. et al. Liposomal formulation of Galbanic acid improved therapeutic efficacy of pegylated liposomal Doxorubicin in mouse colon carcinoma. Sci. Rep. 9(1), 9527. https://doi.org/10.1038/s41598-019-45974-7 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matbou Riahi, M., Sahebkar, A., Sadri, K., Nikoofal-Sahlabadi, S. & Jaafari, M. R. Stable and sustained release liposomal formulations of celecoxib: In vitro and in vivo anti-tumor evaluation. Int. J. Pharm. 540(1), 89–97. https://doi.org/10.1016/j.ijpharm.2018.01.039 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bartlett, G. R. Phosphorus assay in column chromatography. J. Biol. Chem. 234(3), 466–468. https://doi.org/10.1016/S0021-9258(18)70226-3 (1959).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zamani, P. et al. MPL nano-liposomal vaccine containing P5 HER2/neu-derived peptide pulsed PADRE as an effective vaccine in a mice TUBO model of breast cancer. J. Control. Release 303, 223–236. https://doi.org/10.1016/j.jconrel.2019.04.019 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alajmi, M. S. & Almeshal, A. M. Least squares boosting ensemble and quantum-behaved particle swarm optimization for predicting the surface roughness in face milling process of aluminum material. Appl. Sci. 11(5), 2126. https://doi.org/10.3390/app11052126 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ojo, S., Imoize, A. & Alienyi, D. Radial basis function neural network path loss prediction model for LTE networks in multitransmitter signal propagation environments. Int. J. Commun. Syst. 34(3), e4680 (2021).

    Article 

    Google Scholar
     

  • Isabona, J., Imoize, A. L. & Kim, Y. Machine learning-based boosted regression ensemble combined with hyperparameter tuning for optimal adaptive learning. Sensors (Basel) https://doi.org/10.3390/s22103776 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Hothorn, T. & Lausen, B. Double-bagging: Combining classifiers by bootstrap aggregation. Pattern Recogn. 36(6), 1303–1309. https://doi.org/10.1016/S0031-3203(02)00169-3 (2003).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Kashani-Asadi-Jafari, F., Aftab, A. & Ghaemmaghami, S. A machine learning framework for predicting entrapment efficiency in niosomal particles. Int. J. Pharm. 627, 122203. https://doi.org/10.1016/j.ijpharm.2022.122203 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Danaei, M. et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics https://doi.org/10.3390/pharmaceutics10020057 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bélteky, P. et al. Are smaller nanoparticles always better? Understanding the biological effect of size-dependent silver nanoparticle aggregation under biorelevant conditions. Int. J. Nanomed. 16, 3021–3040. https://doi.org/10.2147/ijn.S304138 (2021).

    Article 

    Google Scholar
     

  • Ranjan, A. P., Mukerjee, A., Helson, L. & Vishwanatha, J. K. Scale up, optimization and stability analysis of Curcumin C3 complex-loaded nanoparticles for cancer therapy. J. Nanobiotechnol. 10, 38. https://doi.org/10.1186/1477-3155-10-38 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Azhar Shekoufeh Bahari, L. & Hamishehkar, H. The impact of variables on particle size of solid lipid nanoparticles and nanostructured lipid carriers: A comparative literature review. Adv. Pharm. Bull. 6(2), 143–51. https://doi.org/10.15171/apb.2016.021 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woodbury, D. J., Richardson, E. S., Grigg, A. W., Welling, R. D. & Knudson, B. H. Reducing liposome size with ultrasound: Bimodal size distributions. J. Liposome Res. 16(1), 57–80. https://doi.org/10.1080/08982100500528842 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shaker, S., Gardouh, A. R. & Ghorab, M. M. Factors affecting liposomes particle size prepared by ethanol injection method. Res. Pharm. Sci. 12(5), 346–352. https://doi.org/10.4103/1735-5362.213979 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakhaei, P. et al. Liposomes: Structure, biomedical applications, and stability parameters with emphasis on cholesterol. Front. Bioeng. Biotechnol. https://doi.org/10.3389/fbioe.2021.705886 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farzaneh, H. et al. A study on the role of cholesterol and phosphatidylcholine in various features of liposomal doxorubicin: From liposomal preparation to therapy. Int. J. Pharm. 551(1–2), 300–308. https://doi.org/10.1016/j.ijpharm.2018.09.047 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, S. C., Lee, K. E., Kim, J. J. & Lim, S. H. The effect of cholesterol in the liposome bilayer on the stabilization of incorporated Retinol. J. Liposome Res. 15(3–4), 157–166. https://doi.org/10.1080/08982100500364131 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Briuglia, M.-L., Rotella, C., McFarlane, A. & Lamprou, D. A. Influence of cholesterol on liposome stability and on in vitro drug release. Drug Deliv. Transl. Res. 5(3), 231–242. https://doi.org/10.1007/s13346-015-0220-8 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perumal, V., Banerjee, S., Das, S., Sen, R. K. & Mandal, M. Effect of liposomal celecoxib on proliferation of colon cancer cell and inhibition of DMBA-induced tumor in rat model. Cancer Nanotechnol. 2(1), 67–79. https://doi.org/10.1007/s12645-011-0017-5 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pereira-Lachataignerais, J. et al. Study and formation of vesicle systems with low polydispersity index by ultrasound method. Chem. Phys. Lipids 140(1–2), 88–97. https://doi.org/10.1016/j.chemphyslip.2006.01.008 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heurtault, B., Saulnier, P., Pech, B., Proust, J. E. & Benoit, J. P. Physico-chemical stability of colloidal lipid particles. Biomaterials 24(23), 4283–4300. https://doi.org/10.1016/s0142-9612(03)00331-4 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Manosroi, A., Podjanasoonthon, K. & Manosroi, J. Development of novel topical tranexamic acid liposome formulations. Int. J. Pharm. 235(1–2), 61–70. https://doi.org/10.1016/s0378-5173(01)00980-2 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamaguchi, T., Nomura, M., Matsuoka, T. & Koda, S. Effects of frequency and power of ultrasound on the size reduction of liposome. Chem. Phys. Lipids 160(1), 58–62. https://doi.org/10.1016/j.chemphyslip.2009.04.002 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, F. et al. Paclitaxel-liposome-microbubble complexes as ultrasound-triggered therapeutic drug delivery carriers. J Control. Release 166(3), 246–255. https://doi.org/10.1016/j.jconrel.2012.12.025 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abdallah, W. F. et al. Evaluation of ultrasound-assisted thrombolysis using custom liposomes in a model of retinal vein occlusion. Investig. Ophthalmol. Vis. Sci. 53(11), 6920–6927. https://doi.org/10.1167/iovs.12-10389 (2012).

    Article 

    Google Scholar
     

  • Ong, S. G., Chitneni, M., Lee, K. S., Ming, L. C. & Yuen, K. H. Evaluation of extrusion technique for Nanosizing liposomes. Pharmaceutics 8(4), 36. https://doi.org/10.3390/pharmaceutics8040036 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arulsudar, N., Subramanian, N. & Muthy, R. S. Comparison of artificial neural network and multiple linear regression in the optimization of formulation parameters of leuprolide acetate loaded liposomes. J. Pharm. Pharm. Sci. 8(2), 243–258 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Subramanian, N., Yajnik, A. & Murthy, R. S. Artificial neural network as an alternative to multiple regression analysis in optimizing formulation parameters of cytarabine liposomes. AAPS PharmSciTech. 5(1), E4. https://doi.org/10.1208/pt050104 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Cysewski, P., Jeliński, T., Cymerman, P. & Przybyłek, M. Solvent screening for solubility enhancement of theophylline in neat, binary and ternary NADES solvents: New measurements and ensemble machine learning. Int. J. Mol. Sci. 22(14), 7347. https://doi.org/10.3390/ijms22147347 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoseini B, Jaafari MR, Golabpour A, Momtazi-Borojeni AA, Eslami S. Optimizing nanoliposomal formulations: Assessing factors affecting entrapment efficiency of curcumin-loaded liposomes using machine learning. International Journal of Pharmaceutics. 2023;646:123414. doi: https://doi.org/10.1016/j.ijpharm.2023.123414.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maeda, H., Wu, J., Sawa, T., Matsumura, Y. & Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J. Control. Release 65(1–2), 271–284. https://doi.org/10.1016/s0168-3659(99)00248-5 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Leave a Comment

    Your email address will not be published. Required fields are marked *

    Scroll to Top