Dependence on the socio-economic system impairs the … – Nature.com


  • Campbell, B. M. et al. Agriculture production as a major driver of the earth system exceeding planetary boundaries. Ecol. Soc. 22(4), 8. https://doi.org/10.5751/ES-09595-220408 (2017).

  • IPCC. Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. (2019).

  • IPBES. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. (2019) https://doi.org/10.5281/zenodo.3831673.

  • Leroy, F. et al. Animal board invited review: Animal source foods in healthy, sustainable, and ethical diets—An argument against drastic limitation of livestock in the food system. Animal 16, 100457 (2022).

    PubMed 

    Google Scholar
     

  • Muñoz-Ulecia, E., Rodríguez Gómez, M., Bernués Jal, A., Benhamou Prat, A. & Martín-Collado, D. Do animal source foods always ensure healthy, sustainable, and ethical diets?. Animal 16, 1 (2022).


    Google Scholar
     

  • Rivera-Ferre, M. G. et al. Re-framing the climate change debate in the livestock sector: Mitigation and adaptation options. Wiley Interdiscip. Rev. Clim. Chang. 7, 869–892 (2016).


    Google Scholar
     

  • McGee, M. et al. Performance, meat quality, profitability, and greenhouse gas emissions of suckler bulls from pasture-based compared to an indoor high-concentrate weanling-to-beef finishing system. Agric. Syst. 198, 103379 (2022).


    Google Scholar
     

  • Garnett, T. et al. Grazed and confused? Ruminating on cattle, grazing systems, methane, nitrous oxide, the soil carbon sequestration question – and what it all means for greenhouse gas emissions. FCRN. https://edepot.wur.nl/427016 (2017).

  • European, C., Centre, J. R. & Sustainability, I. for E. and. International Reference Life Cycle Data System (ILCD) Handbook – General guide for Life Cycle Assessment – Detailed guidance. Publications Office of the European Union (2010) https://doi.org/10.2788/38479.

  • European Environment Agency. Annual European Union greenhouse gas inventory 1990–2018 and inventory report 2020. (2020).

  • European Commission. The European Green Deal. COM vol. 9 https://jurnal.globalhealthsciencegroup.com/index.php/JPPP/article/download/83/65%0Ahttp://www.embase.com/search/results?subaction=viewrecord&from=export&id=L603546864%5Cnhttps://doi.org/10.1155/2015/420723https://doi.org/10.1007/978-3-319-76 (2019).

  • Raugei, M., Rugani, B., Benetto, E. & Ingwersen, W. W. Integrating emergy into LCA: Potential added value and lingering obstacles. Ecol. Modell. 271, 4–9 (2014).


    Google Scholar
     

  • Odum, H. T. Environmental Accounting: Emergy and Environmental Decision making (Wiley, 1996).


    Google Scholar
     

  • van der Werf, H. M. G., Knudsen, M. T. & Cederberg, C. Towards better representation of organic agriculture in life cycle assessment. Nat. Sustain. 3, 419–425 (2020).


    Google Scholar
     

  • Martín-López, B. et al. Nature’ s contributions to people in mountains: A review. PLoS ONE 14, 1–24 (2019).


    Google Scholar
     

  • Ripoll-Bosch, R., Joy, M. & Bernués, A. Role of self-sufficiency, productivity and diversification on the economic sustainability of farming systems with autochthonous sheep breeds in less favoured areas in Southern Europe. Animal 8, 1229–1237 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Tejedor-Rodríguez, C. et al. Investigating Neolithic caprine husbandry in the Central Pyrenees: Insights from a multi-proxy study at Els Trocs cave (Bisaurri, Spain). PLoS ONE 16, e0244139 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muñoz-Ulecia, E. et al. Drivers of change in mountain agriculture: A thirty-year analysis of trajectories of evolution of cattle farming systems in the Spanish Pyrenees. Agric. Syst. 186, 102983 (2021).


    Google Scholar
     

  • Schader, C. et al. Impacts of feeding less food-competing feedstuffs to livestock on global food system sustainability. J. R. Soc. Interface 12, 20150891 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Veysset, P., Lherm, M., Roulenc, M., Troquier, C. & Bébin, D. Productivity and technical efficiency of suckler beef production systems: Trends for the period 1990 to 2012. Animal 9, 2050–2059. https://doi.org/10.1017/S1751731115002013 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Bernués, A., Ruiz, R., Olaizola, A., Villalba, D. & Casasús, I. Sustainability of pasture-based livestock farming systems in the European Mediterranean context: Synergies and trade-offs. Livest. Sci. 139, 44–57 (2011).


    Google Scholar
     

  • Veysset, P., Lherm, M., Bébin, D. & Roulenc, M. Mixed crop-livestock farming systems: A sustainable way to produce beef? Commercial farms results, questions and perspectives. Animal 8, 1218–1228 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Brown, M. T., Brandt-Williams, S. L., Tilley, D. & Ulgiati, S. Emergy synthesis: An Introduction. In Emergy Synthesis: theory and applications of the emergy methodology (ed. Brown, M. T.) (2000).

  • Thollander, P., Karlsson, M., Rohdin, P., Wollin, J. & Rosenqvist, J. General energy theory. Introd. Ind. Energy Effic. https://doi.org/10.1016/b978-0-12-817247-6.00002-x (2020).


    Google Scholar
     

  • Castellini, C., Bastianoni, S., Granai, C., Bosco, A. D. & Brunetti, M. Sustainability of poultry production using the emergy approach: Comparison of conventional and organic rearing systems. Agric. Ecosyst. Environ. 114, 343–350 (2006).


    Google Scholar
     

  • Guan, F. C., Sha, Z. P., Zhang, Y. Y., Wang, J. F. & Wang, C. Emergy assessment of three home courtyard agriculture production systems in Tibet Autonomous Region, China. J. Zhejiang Univ. Sci. B 17, 628–639 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Panzieri, M., Marchettini, N. & Bastianoni, S. A thermodynamic methodology to assess how different cultivation methods affect sustainability of agricultural systems. Int. J. Sustain. Dev. World Ecol. 9, 1–8 (2002).


    Google Scholar
     

  • Patrizi, N., Niccolucci, V., Castellini, C., Pulselli, F. M. & Bastianoni, S. Sustainability of agro-livestock integration: Implications and results of Emergy evaluation. Sci. Total Environ. 622–623, 1543–1552 (2018).

    ADS 
    PubMed 

    Google Scholar
     

  • Rodríguez-Ortega, T., Bernués, A., Olaizola, A. M. & Brown, M. T. Does intensification result in higher efficiency and sustainability? An emergy analysis of Mediterranean sheep-crop farming systems. J. Clean. Prod. 144, 171–179 (2017).


    Google Scholar
     

  • Bastianoni, S., Marchettini, N., Panzieri, M. & Tiezzi, E. Sustainability assessment of a farm in the Chianti area (Italy). J. Clean. Prod. 9, 365–373 (2001).


    Google Scholar
     

  • Fonseca, A. M. P., Marques, C. A. F., Pinto-Correia, T. & Campbell, D. E. Emergy analysis of a silvo-pastoral system, a case study in southern Portugal. Agrofor. Syst. 90, 137–157 (2016).


    Google Scholar
     

  • Fonseca, A. M. P., Marques, C. A. F., Pinto-Correia, T., Guiomar, N. & Campbell, D. E. Emergy evaluation for decision-making in complex multifunctional farming systems. Agric. Syst. 171, 1–12 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haden, A. C. Emergy analysis of Food Production at S&S Homestead farm. S&S Cent. Sustain. Agric., Lopez Island, WA, USA (2002).

  • Kuczuk, A., Pospolita, J. & Wacław, S. Energy and emergy analysis of mixed crop-livestock farming. E3S Web Conf. 19, 02033 (2017).


    Google Scholar
     

  • dos Reis, J. C. et al. Integrated crop-livestock systems: A sustainable land-use alternative for food production in the Brazilian Cerrado and Amazon. J. Clean. Prod. 283, 124580 (2021).


    Google Scholar
     

  • Pauselli, M. Organic livestock production systems as a model of sustainability development. Ital. J. Anim. Sci. 8, 581–587 (2009).


    Google Scholar
     

  • Zhang, L. X., Yang, Z. F. & Chen, G. Q. Emergy analysis of cropping-grazing system in Inner Mongolia Autonomous Region, China. Energy Policy 35, 3843–3855 (2007).


    Google Scholar
     

  • Zhao, Z., Chen, J., Bai, Y. & Wang, P. Assessing the sustainability of grass-based livestock husbandry in Hulun Buir, China. Phys. Chem. Earth 120, 102907 (2020).


    Google Scholar
     

  • Bernués, A. Economía de da sanidad animal en áreas de montaña: Interrelaciones entre la patología y los sistemas de explotación de vacuno y evaluación económica de programas sanitarios. (University of Zaragoza, 1994).

  • García-Martínez, A., Olaizola, A. & Bernués, A. Trajectories of evolution and drivers of change in European mountain cattle farming systems. Animal 3, 152–165 (2009).

    PubMed 

    Google Scholar
     

  • Olaizola, A. Análisis de la Ganadería en un Valle Pirenaico Característico Mediante Técnicas Multivariantes y de Optimización (University of Zaragoza, 1991).


    Google Scholar
     

  • Oteros-Rozas, E. et al. Traditional ecological knowledge among transhumant pastoralists in Mediterranean Spain. Ecol. Soc. 18, 33 (2013).


    Google Scholar
     

  • Agabriel, J. Alimentation des bovins, ovins et caprins. Besoins des animaux – valeurs des aliments. Tables Inra 2007. (Éditions Quae, 2007).

  • Brown, M. T. & Ulgiati, S. Emergy evaluation of the biosphere and natural capital. Ambio 28, 486–493 (1999).


    Google Scholar
     

  • Artuzo, F. D., Allegretti, G., Santos, O. I. B., da Silva, L. X. & Talamini, E. Emergy unsustainability index for agricultural systems assessment: A proposal based on the laws of thermodynamics. Sci. Total Environ. 759, 143524 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Odum, H. T. Energy systems concepts and self-organization: A rebuttal. Oecologia 104, 518–522 (1995).

    ADS 
    PubMed 

    Google Scholar
     

  • Ulgiati, S. & Brown, M. T. Labor and services. Emergy Synth. 7 Theory Appl. Emergy Methodol. Proc. 7th Bienn. Emergy Conf. 557–562 (2013).

  • Brown, M. T., Campbell, D. E., De Vilbiss, C. & Ulgiati, S. The geobiosphere emergy baseline: A synthesis. Ecol. Modell. 339, 92–95 (2016).


    Google Scholar
     

  • Ortega, E., Anami, M. & Diniz, G. Certification of food products using emegy analysis. in Proceedings of III International Workshop Advances in Energy Studies 227–237 (2002).

  • Casasús, I. et al. Vegetation dynamics in Mediterranean forest pastures as affected by beef cattle grazing. Agric. Ecosyst. Environ. 121, 365–370 (2007).


    Google Scholar
     

  • Revilla, R., D’Hour, P., Thenard, V. & Petit, M. Pâturage des zones de pinedes par des bovins. in 2. Rencontres autour des Recherches sur les Ruminants 61–64 (1995).

  • de Leeuw, J. et al. Application of the MODIS MOD 17 Net Primary Production product in grassland carrying capacity assessment. Int. J. Appl. Earth Obs. Geoinf. 78, 66–76 (2019).


    Google Scholar
     

  • Stuart Chapin, F., Matson, P. A. & Vitousek, P. M. Principles of Terrestrial Ecosystem Ecology (Springer, 2011).


    Google Scholar
     

  • Brown, M. T. & Ulgiati, S. Emergy analysis and environmental accounting. Encycl. Energy 2, 329–354 (2004).


    Google Scholar
     

  • European Commision. Farm to Fork Strategy. https://ec.europa.eu/food/sites/food/files/safety/docs/f2f_action-plan_2020_strategy-info_en.pdf (2020).

  • Eldesouky, A., Mesias, F. J., Elghannam, A. & Escribano, M. Can extensification compensate livestock greenhouse gas emissions? A study of the carbon footprint in Spanish agroforestry systems. J. Clean. Prod. 200, 28–38 (2018).


    Google Scholar
     

  • Alfaro-Arguello, R. et al. Steps toward sustainable ranching: An emergy evaluation of conventional and holistic management in Chiapas, Mexico. Agric. Syst. 103, 639–646 (2010).


    Google Scholar
     

  • Rótolo, G. C., Rydberg, T., Lieblein, G. & Francis, C. Emergy evaluation of grazing cattle in Argentina’s Pampas. Agric. Ecosyst. Environ. 119, 383–395 (2007).


    Google Scholar
     

  • López-Mársico, L., Altesor, A., Oyarzabal, M., Baldassini, P. & Paruelo, J. M. Grazing increases below-ground biomass and net primary production in a temperate grassland. Plant Soil 392, 155–162 (2015).


    Google Scholar
     

  • Spash, C. L. Social ecological economics. In Routledge Handbook of Ecological Economics (ed. Spash, C. L.) (Taylor & Francis, 2017).


    Google Scholar
     

  • dos Reis, B. Q. et al. Economic and environmental assessment using emergy of sheep production in Brazil. Sustainability 13, 11595 (2021).


    Google Scholar
     

  • Buller, L. S. et al. Soil improvement and mitigation of greenhouse gas emissions for integrated crop-livestock systems: Case study assessment in the Pantanal savanna highland, Brazil. Agric. Syst. 137, 206–219 (2015).


    Google Scholar
     

  • TWI2050 – The World in 2050. Transformations to Achieve the Sustainable Development Goals – Report prepared by The World in 2050 initiative. International Institute for Applied Systems Analysis (2018). doi:https://doi.org/10.22022/TNT/07-2018.15347.

  • Welsby, D., Price, J., Pye, S. & Ekins, P. Unextractable fossil fuels in a 1.5 °C world. Nature 597, 230–234 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • IEA. Net Zero by 2050 A Roadmap for the Global Energy Sector. www.iea.org/t&c/ (2021).

  • Delannoy, L., Longaretti, P. Y., Murphy, D. J. & Prados, E. Peak oil and the low-carbon energy transition: A net-energy perspective. Appl. Energy 304, 117843 (2021).


    Google Scholar
     

  • Daily, G. C. et al. The value of nature and the nature of value. Science 289, 395–396 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Parrique, T. et al. Decoupling debunked: Evidence and arguments against green growth as a sole strategy for sustainability. Eur. Environ. Bur. 80 (2019).

  • Haberl, H. et al. A systematic review of the evidence on decoupling of GDP, resource use and GHG emissions, part II: Synthesizing the insights. Environ. Res. Lett. 15, 065003 (2020).

    ADS 

    Google Scholar
     

  • Chen, W. et al. Recent progress on emergy research: A bibliometric analysis. Renew. Sustain. Energy Rev. 73, 1051–1060 (2017).


    Google Scholar
     

  • Hau, J. L. & Bakshi, B. R. Promise and problems of emergy analysis. Ecol. Modell. 178, 215–225 (2004).


    Google Scholar
     

  • Bernués, A., Tello-García, E., Rodríguez-Ortega, T., Ripoll-Bosch, R. & Casasús, I. Agricultural practices, ecosystem services and sustainability in High Nature Value farmland: Unraveling the perceptions of farmers and nonfarmers. Land Use Policy 59, 130–142 (2016).


    Google Scholar
     

  • Odum, H. T. & Odum, E. P. The energetic basis for valuation of ecosystem services. Ecosystems 3, 21–23 (2000).


    Google Scholar
     

  • Yang, Q. et al. Emergy-based ecosystem services valuation and classification management applied to China’s grasslands. Ecosyst. Serv. 42, 101073 (2020).


    Google Scholar
     



  • Source link

    Leave a Comment

    Your email address will not be published. Required fields are marked *

    Scroll to Top